Understanding HF/VHF/UHF/SHF Propagation relative to Guided Wave, Ground Wave, Direct Wave, Ionosphere, Troposphere, Aurora, Meteor Scatter, and Earth-Moon-Earth (EME or Moon Bounce)

Paul L Herrman N0NBH 11 July 2010

Propagation Modes

Band	Frequency	Primary Mode of Propagation Image by soest
VLF LF MF	3-30kHz 30-300kHz 300-3000kHz	Guided between the earth & ionosphere Guided between the earth & D layer of ionosphere. Also surface waves Surface waves. E, F layer ionospheric refraction at night, when D layer absorption weakens
HF	3-30MHz	E layer ionospheric refraction. F1, F2 layer ionospheric refraction. Auroral reflection. Meteor scatter
VHF	30-300MHz	Infrequent E ionospheric refraction (Es). Extremely rare F1,F2 layer ionospheric refraction during high sunspot activity up to 80MHz. Direct wave. Auroral reflection. EME reflection. Meteor scatter. Sometimes tropospheric ducting
UHF	300-3000MHz	Direct wave. EME reflection. Tropospheric ducting. Meteor scatter
SHF	3–30GHz 30–300GHz	Direct wave. EME reflection. Tropospheric ducting Direct wave limited by absorption. EME reflection

© Paul L Herrman N0NBH 2011

Guided/Ground/Direct Wave

Guided Wave:

- Most VLF & LF propagation occurs via guided wave (due to long wavelength)

- Ground/water surface and ionosphere are highly conductive at these frequencies
- Form the "walls" of a spherical waveguide.
- Vertical Polorization always used:
 - Horizontal antennas not practical (due to extremely long wavelength)
- Alleviates short circuiting the electric field through the conductivity of the ground Surface (Ground) Wave:
- Low/medium frequencies travel efficiently as a surface waves
- Property of following the curvature of the earth
- Conductivity of the surface affects the propagation of ground waves (more conductive surfaces such as water providing better propagation and result in less dissipation)
- Since the ground is not a perfect electrical conductor, ground waves are attenuated as they follow the earth's surface
- Ground waves do not include ionospheric and tropospheric waves Direct Wave (line-of-sight):
- Propagation of radio waves between antennas that are visible to each other
- The most common of the radio propagation modes at VHF and higher frequencies
- Includes radio signals that travel through non-metallic objects (like walls)
- Ground plane reflection effects are an important factor in line of sight propagation

© NONBH Paul L Herman 2010

Ionospheric Propagation

Simple Propagation

- * 2nd order mode (2X) requires one extra hop....(etc)

Complex Propagation

- Signals strong since RF not attenuated by D layer/ground

Tutorial by NONBH Paul L Herman

Propagation Distances

Hop length is the ground distance covered by RF after it has been reflected once from the ionosphere and returned to Earth

Maximum hop length is set by the height of the ionosphere and curvature of the Earth The maximum hop lengths shown:

- Assumes antenna radiation angle of 4° (shorter with larger antenna elevation angles)

- Assumes E/F layer heights as specified

Distances greater than shown will require more than one hop

 Results in weaker RF signal at the receiver (RF is attenuated by multiple passes through D layer absorption and ground reflection)

Latitude Variations

During the day solar radiation strikes the atmosphere more obliquely with increasing latitude Intensity of radiation and daily production of free electrons decreases with increasing latitude - F region latitude variation persists throughout the night due to the action of upper atmospheric wind currents from day-lit to night-side hemispheres Deviations from the low to high latitude decrease are:

- Equatorial anomaly-daytime F layer peak 15 to 20° N/S latitude

- Mid-latitude trough-nightime minimum around 60° N/S latitude

Tutorial by NONBH Paul L Herrman

Time-of-Day Variations

Frequencies are normally higher during the day and lower at night After dawn, solar radiation causes electrons to be produced in the ionosphere and frequencies increase rapidly to a maximum around noon During the afternoon, frequencies begin falling due to electron loss and with darkness the D, E and F1 layers disappear Communication during the night is by the F layer only and attenuation is very low Through the night, maximum frequencies gradually decrease, reaching their minimum just before dawn

Sunspot Cycle Variations

Solar Cycle is periodic rise and fall in activity which affects HF communications (9-14 years) The higher the activity, the more radiation being emitted from the Sun producing more electrons in the ionosphere which allows the use of higher frequencies. At solar minimum, only the lower frequencies of the HF band will be reflected by ionosphere At solar maximum the higher frequencies will successfully propagate

Tutorial by NONBH Paul L Herrman

Tropospheric Propagation

What causes Tropospheric Propagation:

- Weather causes the condition
- When a large mass of cold air is overrun by warm air (temperature inversion)
- Typically found along a stationary weather front
- Most frequently along coastal areas bordering large bodies of water
- Also in the morning when the rising sun warms the upper layers Additional Information on Tropospheric Ducting:
- The boundary between the two air masses may extend for 1,000 miles (1,600 km)
- Frequencies above 90MHz are more favourably propagated
- Signals exhibit a slow cycle of fading with occasional strong signal levels
- High mountainous areas and undulating terrain between the transmitter and receiver can block tropospheric signals
- A relatively flat land path between the transmitter and receiver is ideal for tropospheric ducting
- Sea paths also tend to produce superior results

Auroral Propagation

What causes radio-auroral events?

Artist K Endo

- Primarily an increase in solar wind caused by solar flares, coronal holes, SIDs & CMEs
- High energy particles enter the Earth's atmosphere along the magnetic lines at the poles
- They collide with atmospheric molecules & release positive ions & negative electrons
- HF bands then close for a short while, but soon recover (increase in SFI)
- 20 30 hours after the solar activity the solar wind shock wave hits the earth.
- This causes a magnetic storm & the HF bands fail as the full auroral event starts
- At this point VHF radio propagation is enhanced over distances of a several hundred km
- Having reached a peak the aurora ends and the HF bands slowly recover, lower freq 1st
- Can take a week before HF bands are back to the state they were before the storm

Time from Sun to Earth:

- Electromagnetic Radiation: 8 min
- High Energy Charged Particles: 15 min- 2 hours
 Enhanced B Field/Plasma Clouds: 2-3 days

Radio-auroral event:

- Ionization at 100 km altitudes
- Usually coupled with Sporadic E events
- Reflection angle is approx 90 deg
- Increase in noise (also doppler freq shift [5kHz at 2m])
- Usually at >60deg Latitude
- Voice very difficult to copy, SSB best voice mode, CW better

© NONBH Paul L Herrman 2010

Meteor Scatter

-- What enables Meteor Scatter Communications:

- When a meteor enters the atmosphere it burns up and creates a trail of ionized particles along its path
- The same way solar events impact ionosphere layers, ionized particles enable brief comm paths to open
- Path distance (typ 2,250 km max) is determined by:
 - Altitude at which ionization occurs (where meteor burns up)
 - Location over Earth surface where the meteor is falling
 - Angle of entry into atmosphere
- · Locations of stations attempting to communicate
- Frequency of reflected RF (typ 20-500MHz) depends on
- intensity of ionization (meteor size) ·
- Communications typically only persist for up to several seconds
- Remember, there are 10's of thousands of meteors entering the atmosphere every day (more during known meteor showers)

How to work Meteor Scatter:

- Normally an advanced planned schedule with the other station is used
- Typically, transmission and receptions are recorded/automated computer programs due to unpredictability
 of this mode of communications
- Any form of communications mode can be used for meteor scatter
 - Single sideband audio transmission is popular
 - Morse code is better, at transmission speeds up to 800 wpm (played back at a slower speed to copy)
 - Several digital mode (computer programs) are available (check out WSJT's program)

© N0NBH Paul L Herrman 2010

Artist unknown

EME/Moon Bounce

How do Earth-Moon-Earth (EME or moon bounce) communications work:

- RF propagation from an Earth-based transmitter to receiver via reflection from the moon surface

- Moon must be visible at TX/RX sites
- Roundtrip distance is 770,000 km
- Path loss 250-310dB depending on:
- · VHF/UHF/Microwave band used
- Modulation format & Doppler shift

- RF reflectivity low (7% typ/12% max)
- Doppler +300Hz Moonrise/-300Hz Moonset
- Moon orbit is not perfectly circular: Varies from 406,700km to 356,400km
 - · Results in 2.25dB difference in path loss

Parts of the Sun (for next slide)

4

6

Parts of the Sun: 1-Core. Temp ~15MK 2-Radiative zone. Temp ~7MK 3-Convective zone. Temp ~2MK 4-Photosphere. Sun's visual surface. Temp 4k-6kK 5-Chromosphere. ~2,000km deep. Primarily hydrogen. Temp 4k-20kK 6-Corona. Plasma "atmosphere" of Sun. Spectral features traced to highly ionized Iron. Temp in excess of 1MK 7-Sunspots. Concentrations of magnetic flux (0.4 to >1.0 tesla) in photosphere, typically 2,500-50,000 km across. Appear dark because 1.5k-2.5kK cooler than

- surrounding area. ~5,000km deep 8-Granules. On photosphere. Caused by convection currents of plasma within Sun's convective zone. 1,000-30,000 km dia. Life 8 minutes to 24 hours
- 9-Prominence. Large, bright loop, spray, or surge. Anchored to photosphere, and extend into corona, but much cooler plasma by 10kK

Not shown:

Solar transition region. Between chromosphere and corona. Below region, helium not fully ionized. Above region it is fully ionized. Temp 60k- 80kK Solar flare. Large explosion in Sun's atmosphere that affect all solar layers. Heats plasma to tens of millionsK

Definitions for the images:

EIT = Extreme Ultraviolet (EUV) Imaging Telescope. Provides images of transition region and inner corona MDI = Michelson Doppler Imager measures underlying magnetic fields & gas flow patterns on solar surface VSM = Vector Spectromagnetograph provides magnetic field observations in photosphere & chromosphere SH = Spectroheliograph provides photographic image of Sun's visible surface in light of a single wavelength LASCO=Large Angle and Spectrometric Coronagraph

7

Artist Pbroks13

9

Maria .

3

2

Putting the Solar Data to Use

Current Solar-Terrestrial Data	Category	Radio Blackouts Use X-Ray	Solar Radiation Storms Use Proton Flux	Geomagnetic Storms Use K-Index/K-nT/ Aurora/Solar Wind/Bz	Band Openings Use Solar Flux (SN)	Electron Alert Use Electron Flux
Solar-Terrestrial Data 2010 Jul 11 1206 UTC SFI: 80 SN: 18 A-Index:2 K-Index:1 / 8 nT	Extreme	X20 (1 per cycle) Complete HF blackout on entire sunlit side lasting hours	1.0e+06 (1 per cycle) Complete HF blackout in polar regions	K=9 (nT=>500) [Aur=10++] (SW=>800) [Bz=-40 -50] (4 per cycle) HF impossible. Aurora to 40°. Noise S30+.	200-300 (SN=160-250) Reliable	
X-Ray: B2.8 304A: 121.8 @ SEM Ptn Flx: 1.54e-01 Elc Flx: 1.06e+03 Aurora: 3 /n=0.93 Mag (Bz): 2.8 Solar Wind: 266.4	Severe	X10 (8 per cycle) HF blackout on most of sunlit side for 1 to 2 hours	1.0e+05 (3 per cycle) Partial HF blackout in polar regions	K=8 (nT=330-500) [Aur=10+] (SW=700-800) [Bz=-30 -40] (100 per cycle) HF sporadic. Aurora to 45°. Noise S20-S30.	communications all bands up through 6m	>1.0e+03 Alert Partial to complete HF blackout in polar regions
HF Conditions Band Day Night 80n-40n Fair Good 30n-20n Fair Fair 17n-15n Poor Poor 12n-10n Poor Poor	Strong	X1 (175 per cycle) Wide area HF blackout for about an hour on sunlit side	1.0e+04 (10 per cycle) Degraded HF propagation in polar regions	K=7 (nT=200-330) [Aur=10] (SW=600-700) [Bz=-20 -30] (200 per cycle) HF intermittent. Aurora to 50°. Noise S9-S20.	150-200 (SN=105-160) Excellent conditions all bands up through 10m w/6m openings	
VHF Conditions Aur Lat 65.6° Aurora Band Closed 6m EsEU Band Closed 4m EsEU Band Closed 2m EsEU Band Closed 2m EsNA Band Closed	Moderate	M5 (350 per cycle) Limited HF blackout on sunlit side for tens of minutes	1.0e+03 (25 per cycle) Small effects on HF in polar regions	K=6 (nT=120-200) [Aur=9] (SW=500-600) [Bz=-10-20] (600 per cycle) HF fade higher lats. Aurora to 55°. Noise S6-S9.	120-150 (SN=70-105) Fair to good conditions all bands up through 10m	< <u>1.0e+03 Active</u> Degraded HF propagation in polar regions
HUF HS 0 12 18 UTC Geonag Field VR QUIET Sig Noise Lvl S0-S1 Current Solar Image	Minor	M1 (2000 per cycle) Occasional loss of radio contact on sunlit side	1.0e+02 (50 per cycle) Minor impacts on HF in polar regions	K=5 (nT=70-120) [Aur=8] (SW=400-500) [Bz=0 -10] (1700 per cycle) HF fade higher lats. Aurora to 56°. Noise S4-S6.	90-120 (SN=35-70) Fair conditions all bands up through 15m	<1.0e+02 Active Minor impacts on HF in polar regions
4	Active	C1 Moderate Flare Low absorption of HF signals	1.0e+01 Active Very minor impacts on HF in polar regions	K=3-4 (nT=20-70) [Aur=6-7] (SW=200-400) [Bz=0.+50] Unsettled/Active Minor HF fade higher lats. Aurora 60-58°. Noise S2-S3.	70-90 (SN=10-35) Poor to fair conditions all bands up through 20m	<1.0e+01 Normal No impacts on HF
http://www.n0nbh.com Copyright Paul L Herrman 2010	Normal	A1-B9 No/Small Flare No or very minor impact to HF signals	1.0e+00 Normal No impacts on HF	K=0-2 (nT=0-20) [Aur=<5] (SW=200-400) [Bz=0.+50] Inactive/Quiet No impacts on HF. Aurora 67-62°. Noise S0-S2.	64-70 (SN=0-10) Bands above 40m unusable	<1.0e+00 Normal No impacts on HF
	3 ²³		VHF Conditio	ns	· · · ·	

<u>Aurora (Northem Auroral Activity)</u>: Band Closed = No/Low Auroral activity. High LAT AUR = Auroral activity >60°N. MID LAT AUR = Auroral activity 60° to 30°N. <u>ESEU (Sporadic E - Europe)</u>: Band Closed = No Sporadic E (ES) activity. High MUF (2M only) = Cond support 2M ES 50/70/144MHz ES = Respective band open <u>ESNA (Sporadic E - North America)</u>: Band Closed = No Sporadic E (ES) activity. High MUF = Cond support 2M ES 144MHz ES = ES reported @ 2M <u>MUF (Max Usable Frequency Bar Color</u>): No Sporadic E (ES) activity / ES reported @ 6M / ES reported @ 4M / Cond support 2M ES / ES reported @ 2M <u>MS (Meteor Scatter Bar</u>): Use color code below bar to determine relative activity.

©NONBH Paul L Herrman 2010

Putting the Solar Images to Use (1)

SoHo/SDO/Other	A um ?image=	TempK Temp°C Temp°F	SoHo/SDO/Other Im age	A nm ?image=	TempK Temp°C Temp°F	SoHo/SDO/Other Im age	A nm ?image=	TempK Temp°C Temp°F
Im age	Spectral Line & Ioniz ation			Spectral Line & Ionization	Best used to see		Spectral Line & Ionization	Best used to see
	171 A 17.1 nm eit171	1,000,000K 999,727°C 1,799,540°F	(Carla	195 A 19.5 nm eit195	1,500,000K 1,499,727°C 2,699,540°F		284 A 28.4 nm eit284	2,000,000K 1,999,727°C 3,599,540°F
	Iron (Fe) 8-9 tim es ionized	Tran-reg, sunspots, low temp loops		Iron (Fe) 11 tim es ionized	Tran-reg, sunspots, corona, flares		Iron (Fe) 14 tim es ionized	Tran-reg, aunspots, corona, high temp loops
	304 A 30.4 nm eit304	80,000K 79,727°C 143,540°F	View Contraction	6302 A 630.2 nm vsm 1	5,800K 5,527°C 9,980°F		8542 A 854.2 nm vsm 2	10,000K 9,727°C 17,540°F
	Helium (He) l tim es ionized	Chrom osphere, Tran-reg, Prom inence, sunspots, Granules		Iron (Fe) 0 tim es ionized	Photosphere, sunspots		Calcium (Ca) 1 tim es ionized	Photosphere, Chrom osphere, sunspots
	9500 A 950 nm corona	2,000,000K 1,999,727°C 3,599,540°F		NA NA c2	2,000,000K 1,999,727°C 3,599,540°F	AL PA	NA NA c3	2,000,000K 1,999,727°C 3,599,540°F
	White Light	Corona	Sensorial d	White Light	Corona, CME, Flare	a Seavial with	White Light	Corona, CME, Flare
	10830 A 1083 nm sh	20,000K 19,727°C 35,540°F		6562.8 A 656.28nm ha	20,000K 19,727°C 35,540°F		6767 A 676.7 nm mdi	6,000K 5727°C 10,340°F
	Helium (He) 0 tim es ionized	Chrom osphere, Tran-reg, sunspots, Granules		Hydrogen (H) Ha-Line	Chrom osphere, Tran-reg, sunspots, flares		Nickel (Ni) 0 times ionized	Photosphere, sunspots

Putting the Solar Images to Use (2)

Magnetogram N/A mag	N/A N/A N/A	171 A 17.1 nm sdo_171	1,000,000K 999,727°C 1,799,540°F	()	193 A 19.3 nm sdo_193	1,500,000K 1,499,727°C 2,699,540°F
N/A N/A	Sunspots	Iron (Fe) 8 tim es ionized	Quiet corona, upper transition region		Iron (Fe) 11/23 tim es ionized	Corona and hot flare plasm a
335 A 33.5 nm sdo_335	5,000,000K 5,000,000°C 9,000,000°F	304 A 30.4 nm sdo_304	80,000K 79,727°C 143,540°F		94 A 9.4 nm sdo_094	9,000,000K 9,000,000°C 16,000,000°F
Iron (Fe) 15 tim es ionized	Active-region corona	Helium (He) l tim es ionized	Chrom osphere, transition region		Iron (Fe) 17 tim es ionized	Flaring regions
131 A 13.1 nm sdo_131	1,000,000K 999,727℃ 1,799,540℉	211 A 22.1 nm sdo_211	2,000,000K 1,999,727°C 3,599,540°F		1600 A 160.0 nm sdo_1600	Unknown
Iron (Fe) 7/19/22 times ionized	Flaring regions	Iron (Fe) 13 tim es ionized	Active-region corona		Carbon (C) 3 tim es ionized	Transition region, upper photosphere
1700 A 170.0 mm sdo_1700	Unknown	4500 Å 450.0 nm sdo_4500	2,000,000K 1,999,727°C 3,599,540°F		211/193/ 171 A sdo_compl	Unknown
Continuum	Tem perature minimum, photosphere	White Light	Photosphere	(All	Com posite Image	See above
304/211/ 171 A sdo_comp2	Unimown	94/193/ 335 A sdo_com p3	Unknown	2		
Composite Image	See above	Composite Image	See above			
-				CN0NBH J	aul 1. Norman 20	10

NONBH Solar Web Pages

- I hope the information in this presentation helps you with Ham Radio DX on all the bands
- Additional data, tools, and even Solar banners/widgets for your webpages and computer devices are available at http://www.hamqsl.com/solar.html
- Please feel free to contact me with any questions, comments, or additional ideas at n0nbh@cox.net
- 73 all and good DX de Paul N0NBH