Flame-Spreading Processes in a Small-Caliber Gun

Article · July 2007

2 authors, including:

Paul J. Conroy
Army Research Laboratory

30 PUBLICATIONS 71 CITATIONS

All content following this page was uploaded by Paul J. Conroy on 17 February 2015.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Flame-Spreading Processes in a Small-Caliber Gun

by Albert W. Horst and Paul J. Conroy

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

DESTRUCTION NOTICE—Destroy this report when it is no longer needed. Do not return it to the originator.
Flame-Spreading Processes in a Small-Caliber Gun

Albert W. Horst
American Systems

Paul J. Conroy
Weapons and Materials Research Directorate, ARL
Flame-Spreading Processes in a Small-Caliber Gun

Albert W. Horst (AS) and Paul J. Conroy (ARL)

U.S. Army Research Laboratory
Weapons and Materials Research Directorate
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-4181

Approved for public release; distribution is unlimited.

flame spreading; interior ballistics; small caliber
Contents

List of Figures .. iv

1. Introduction ... 1

2. Baseline Calculation ... 2

3. The Influence of Variation in Ignition Stimulus 4

4. The Influence of Variation in Propellant Bed Rheology 5

5. The Influence of Initial Ullage 7

6. Lessons Learned and The Way Forward 9

7. Conclusions .. 11

8. References .. 12

Distribution List ... 14
List of Figures

Figure 1. XKTC prediction of interior ballistic parameters for a baseline 5.56-mm cartridge. 3
Figure 2. XKTC prediction of ignition phase profiles at 0.1 ms for a baseline 5.56-mm
cartridge. ... 3
Figure 3. XKTC prediction of ballistic parameters of a 5.56-mm cartridge with a slow igniter... 4
Figure 4. XKTC prediction of ignition phase profiles for a 5.56-mm cartridge with a slow
igniter. .. 5
Figure 5. Granular stress law in XKTC code.. 6
Figure 6. XKTC prediction of ballistic parameters for a 5.56-mm cartridge with “soft”
propellant. .. 7
Figure 7. XKTC prediction of ignition phase profiles at 0.1 ms for a 5.56-mm cartridge with
“soft” propellant.. 7
Figure 8. XKTC prediction of ballistic parameters for a 5.56-mm cartridge with small region
of ullage between the propellant bed and projectile base. ... 8
Figure 9. Example of small-caliber cartridge with center core igniter. .. 9
Figure 10. XKTC prediction of ballistic parameters for a 5.56-mm cartridge employing
a vented center core tube containing pre-ignited propellant (based on data from
reference 13) .. 10
1. Introduction

The influence of ignition stimulus, the influence of parasitic components, and the distribution of initial ullage on the formation of pressure waves in large-caliber guns has been studied for more than 30 years and is the subject of numerous theoretical and experimental investigations (early examples, 1-7). These enlightening efforts were in direct response to the occurrence of a series of malfunctions, sometimes catastrophic, in large-caliber Navy and Army guns (8-11), which accompanied substantial longitudinal pressure waves, the causes for which were ultimately tied to the features mentioned, all of which can lead to local pressurization of the gun chamber with substantial and undesirable ensuing two-phase flow dynamics. Without similar motivation, small and medium caliber interior ballistics and cartridge design have, in most cases, proceeded without the benefit of such a detailed investigation.

Over the past several years, however, U.S. involvement in Iraq and Afghanistan has understandingly stimulated significant interest in developing an increased level of technical understanding of the detailed phenomenology of small-caliber ballistics with the goal of increasing the performance and reliability of such weapons. The study reported herein addresses the detailed interior ballistics phenomenology of a generic 5.56-mm round. The code employed is known as XKTC (12) and provides a quasi-one-dimensional, macroscopic (with respect to individual grains), two-phase description of flow in the gun chamber. The gas and solid phases are coupled through heat transfer, combustion, and interphase drag; these processes are modeled with the use of empirical correlations that relate the microphenomena to the average flow properties described by the governing equations. The igniter is typically treated as a predetermined mass injection profile, and flame spreading follows primarily according to convection, until the ignition temperature is reached and combustion follows at a rate determined by the local pressure. Regions of axial ullage (i.e., free space) or compactable filler elements (e.g., propellant packing spacers, case closure plugs) are recognized as boundary conditions on the two-phase region occupied by the propellant. With these features, XKTC, despite the limitation of its one-dimensional-with-area-change representation, provides a first-level capability for treating the dynamics of the axial pressure field and its potential for causing potentially damaging overpressures. Input to the code includes gun chamber and tube internal dimensions; projectile mass and travel; a barrel resistance profile; igniter mass and thermochemical properties; and main charge propellant mass, axial boundaries, grain dimensions, thermochemical properties, burning rates, thermal properties, ignition temperature, and bed compressibility.

1 not an acronym
2. Baseline Calculation

The baseline data for the series of calculations discussed herein, as reported previously (13), are based on physical and chemical characteristics of a generic 5.56-mm round with a deterred, rolled ball propellant. Gun, cartridge case, and projectile dimensions are approximately those of the M855 cartridge, with case debulking force\(^2\) and barrel resistance assigned values consistent with experience and dimensional properties of the case and tube. Thermochemical properties for the primer (FA956) and propellant (WC844) compositions were determined through the use of the BLAKE\(^3\) code (14). The primer output profile was based initially on high speed photographic studies (15) and subsequently varied to determine its influence. Distribution of deterrent in the main charge, as well as accompanying burning rates, followed historical data provided by the manufacturer (16). Propellant thermal conductivity and diffusivity, rheological data, and ignition temperature were not specifically known for this propellant and were assumed to be consistent with those typically assigned to gun propellants.

An XKTC calculation employing these data yields the results shown in figure 1. Pressure-time curves for breech and projectile base locations are depicted, along with projectile acceleration versus time and a curve depicting the progress of flame spread in the propellant bed. The pressure-time curves exhibit a moderate level of pressure waves, as expected for a base-ignited granular propellant charge. Of particular note, however, is the acceleration curve, which should mimic (if appropriately scaled) the base pressure curve (minus the barrel resistance); rather, it reveals a sharp spike before the gas pressure reaches the base of the projectile, which suggests that intergranular stress is driving the projectile motion during this period of time. Further, the flame-spreading curve reveals that although ignition at the base of the charge is very prompt, ignition at the forward end is delayed until the assumed stress-driven acceleration spike has diminished.

To elucidate the underlying cause of this behavior, figure 2 displays gas pressure, propellant bed stress, and propellant surface temperature from breech to projectile base and at the time of 0.1 ms. Indeed, while the convectively driven flame front (and accompanying increase in gas pressure) has not yet reached the front of the propellant bed, a substantial increase in intergranular stress is present at the projectile base. Although both gas pressure and solid-phase stress lead to early projectile acceleration, subsequent calculations will show that the accompanying state of flame propagation and propellant combustion differ considerably with varying ignition stimuli and bed conditions, leading to not only differences in the magnitude of pressure waves but also maximum pressure and muzzle velocity! Specifically, we examine the effects of ignition stimulus, propellant bed rheology (i.e., stiffness), and the presence of forward ullage in the case.

\(^2\)That is, the force required to expel the projectile from the crimped cartridge case.

\(^3\)Not an acronym
Figure 1. XKTC prediction of interior ballistic parameters for a baseline 5.56-mm cartridge.

Figure 2. XKTC prediction of ignition phase profiles at 0.1 ms for a baseline 5.56-mm cartridge.
3. The Influence of Variation in Ignition Stimulus

For completeness, we recall the previous results looking at the effects of (a) uniform, instantaneous ignition (as one would assume in a lumped parameter calculation) and (b) an order of magnitude slower primer output profile than that used in the baseline calculation (13). First, with the assumption that all propellant surfaces were initially ignited at time zero, no ignition-induced pressure waves are produced and no intergranular stress waves are formed. Since the entire propellant bed is burning at the time of first motion of the projectile, one might expect an increase in performance and indeed it does, with a resulting peak pressure of 72.5 kpsi and muzzle velocity 3,235 ft/s versus 55.2 kpsi and 3,023 ft/s for the baseline. Otherwise, the results are unremarkable and not displayed, with smooth pressure-time curves and the acceleration curve overlying the base pressure curve, minus retarding forces associated with the case crimp and the origin of rifling.

However, when primer function time was increased from 0.2 ms to 2.0 ms (and flux correspondingly adjusted to maintain the same total output), we obtain the initially surprising result that the predicted pressure is once again higher (this time only about 10 kpsi) than that for the baseline case. The first clue to an explanation is found in figure 3, with the absence of an early spike in the acceleration curve, indicating a significant reduction in bed stress at the projectile base. Figure 4 then tells the rest of the story. Although flame spreading is much slower than in the baseline, nearing completion at 0.3 ms versus 0.1 ms, the net effect, however, is not less propellant burning at the time of first projectile motion, but actually the opposite, as the reduced intensity of the igniter results in a much lower intergranular stress at the base of the projectile and thus a lower initial projectile acceleration. Significantly, peak pressure is attained at a reduced projectile travel (~8%) (and thus slightly smaller total available volume) and a slightly greater (~3%) quantity of propellant burned, which explains its increase.

Figure 3. XKTC prediction of ballistic parameters of a 5.56-mm cartridge with a slow igniter.
Figure 4. XKTC prediction of ignition phase profiles for a 5.56-mm cartridge with a slow igniter.

4. The Influence of Variation in Propellant Bed Rheology

The granular propellant bed compaction law in XKTC is depicted graphically in figure 5. By convention, the bed porosity ε is defined as the ratio of free volume to the total volume in a given region (i.e., the fraction not occupied by the solid phase propellant). As the bed is compacted from its natural settling porosity, ε_0, to some lesser value, the local intergranular stress rises at a rate dependent on a_0 (actually $a_0\varepsilon_0/\varepsilon$), where a_0 is the rate of propagation of intergranular stress in a settled bed during loading. During unloading or reloading, a higher rate is assumed, as determined by the parameter a_1. The reader is directed to the reference (12) for a more complete discussion of this representation.
To examine the role of this property, a calculation was performed with the baseline database but the value of a_o reduced from 15,000 inches/second to 5,000 inches/second. This represents a change in bed “stiffness” from that of a single-base propellant such as the Navy’s NACO4 gun propellant to a much softer double-base propellant, such as the German JA2 formulation used by the U.S. Army in high performance tank guns. This particular datum is not currently available for WC844 propellant, but its value likely falls somewhere between these two extremes. The predicted pressure-time curves of figure 6 reveal substantial and continuing longitudinal waves until the time of peak pressure, with the acceleration profile essentially following the base pressure curve, which suggests little or no influence from intergranular stress. Further, although the large pressure waves somewhat mitigate the effectiveness of the maximum pressure (68.9 kpsi with a muzzle velocity of 3,148 ft/s), it is clear that bed compaction has not prevented early ignition of propellant grains in the forward portion of the bed. Indeed, figure 7 reveals an explanation for all, the rapid ignition of the bed preceding the intergranular stress wave, so that when compaction does occur, it does so in an already burning region of propellant, reducing local volume and increasing pressure and burn rates. A complicated interaction of processes during the ignition phase of small caliber rounds is clearly pictured. A closer examination of tabular results shows the continuation of pressure waves to be a result of actual flow reversals in the solid as well as gas phase, repeating bed compaction at both ends of the chamber and associated local pressurization and burning processes as described before.

4Navy cool
Figure 6. XKTC prediction of ballistic parameters for a 5.56-mm cartridge with “soft” propellant.

Figure 7. XKTC prediction of ignition phase profiles at 0.1 ms for a 5.56-mm cartridge with “soft” propellant.

5. The Influence of Initial Ullage

The presence of initial ullage in the gun chamber can greatly complicate the path of flame spreading, the localization of pressurization, and the subsequent equilibration of pressure gradients. In
this very brief section, we look at just one aspect of this problem, namely, the presence of a small amount (5%) of longitudinal ullage at the forward end of the chamber between propellant bed and projectile base. Figure 8 displays the predicted influence of a region of forward ullage in the (otherwise) baseline configuration (compare to figure 1). Although there is very little influence on flame front propagation, peak pressure is increased from 55.2 kpsi to 57.9 kpsi, with a corresponding increase in muzzle velocity of 40 ft/s. However, the real change is in flow dynamics in both the gas and solid phases. Pressure waves are considerable larger and more persistent with the presence of ullage, with the initial differential pressure (not plotted separately in the figure but easily discernible) nearly doubled (15.2 kpsi versus 7.9 kpsi). Peak intergranular stress at the base of the projectile at the start of projectile motion (again, not displayed directly but clearly reflected in the acceleration profiles) is similarly increased by ~10 kpsi. The mechanism for these dynamics results from the shifting rearward of first combustion and pressurization, leading to an increase in the early forward flow of the gases, and via interphase drag and differential pressure forces, the propellant bed as well, leading to a stronger stagnation at the projectile base and increased subsequent two-phase flow dynamics. More complex distributions of ullage will lead to correspondingly more complex flow dynamics; the assessment of most will require the use of a multi-dimensional code such as NGEN3\(^5\) (17). However, longitudinal flow dynamics will continue to be the dominant mode in solid-propellant guns, and this brief study confirms their importance even in small-caliber guns.

\(^5\)Next generation three-dimensional interior ballistic code
6. Lessons Learned and The Way Forward

So what have we learned from this series of calculations? First, just as is the case for the large-caliber world, small-caliber ammunition configurations are not immune to problems associated with non-simultaneity of ignition. Not only is localized ignition likely to lead to strong longitudinal pressure gradients and ensuing pressure waves, but owing to the tight packing of the propellant grains, large intergranular stresses can result during the flame-spreading process. In particular, early bed stresses at the base of the projectile may actually be responsible for debulleting of the projectile from the cartridge case and early motion in some cartridges. Should this occur before complete ignition of the bed, a significant influence on performance (i.e., peak pressure and muzzle velocity) in terms of level and reproducibility could result.

We have seen that the assumption of uniform, instantaneous ignition eliminates such problems. Uniform ignition not being possible, it is expected that increased axial permeability of the charge to ignition and propellant gases will mitigate the problem of local pressurization and the described detrimental effects. Achieving either of these desired conditions, however, is difficult in a charge consisting of a tightly packed bed of small granular propellant. Alternate propellant configurations (very small sticks or slabs) with reduced resistance to axial gas flow might be successful but are likely to be extremely difficult to manufacture in the required small web size for small-caliber guns. Propellant mechanical properties, as they impact bed compressibility, are also worth investigating as an approach to maintain initial bed porosity and permeability to facilitate early ignition and (gas) pressurization of the front of the bed, adjacent to the base of the projectile. Alternatively, innovative techniques for transmitting ignition gases along the walls of the cartridge case (configurational or material) are worthy of consideration.

Our previous paper (13) described two vented center core concepts, one which was simply a hollow tube (“swizzle stick”) and a second in which the tube was filled with propellant. Figure 9 provides a simple depiction of this arrangement for a 5.56-mm cartridge; not surprisingly, it looks very much like a center core or bayonet primer-ignited large-caliber round in miniature.

![Figure 9. Example of small-caliber cartridge with center core igniter.](image)

Although the earlier study revealed that the predicted curves for the empty swizzle stick exhibited undesirable longitudinal pressure waves, which is a likely result of a continued strong base ignition in the necessarily one-dimensional environment assumed by the XKTC code, a multidimensional analysis may reveal benefits if one can direct a majority of the primer output into the tube rather
than into the rear of the propellant bed. The second concept, however, which for simplicity assumed no primer but the swizzle stick to be filled with uniformly ignited propellant, was quite successful in reducing pressure waves and associated bed stresses, presented here as figure 10. Although promising, the same caution as with alternate propellant geometries needs be offered: producibility of such an igniter that is effective, reliable, and durable presents a formidable challenge.

Ultimately, performance enhancement is desired for small arms cartridges. Improved interior ballistic performance can most directly be achieved if the weapon is modified to operate at a higher pressure; however, the ignition process becomes only more critical as pressures are increased. Clearly, any study to improve performance should include consideration of the complexity of the ignition process in such systems, with improvement of the ignition system considered an integral part of the effort. All in all, the challenge for nearly uniform ignition in small-caliber cartridges should be considered as important is in large-caliber rounds, with both performance and safety as benefits.

![Figure 10. XKTC prediction of ballistic parameters for a 5.56-mm cartridge employing a vented center core tube containing pre-ignited propellant (based on data from reference 13).](image-url)
7. Conclusions

A first attempt has been made to model the effect of igniter and propellant parameters on the interior ballistics of a small arms cartridge. In particular, the igniter output profile, the stiffness of the propellant bed, and the presence or axial ullage were varied to determine potential effects on flame spread, bed stress, early projectile motion, and ultimately gun performance. The XKTC one-dimensional, two-phase interior ballistic code was employed because of its capability to treat explicitly such features and its relative economy of use. Ultimately, a much more time-consuming analysis using a multidimensional code such as NGEN3 will be required to provide a complete understanding of processes involved, but since the specific features of the interior ballistic cycle undergoing investigation in this first study are largely one-dimensional, XKTC seemed to be a good choice.

We point out that many of the input values employed in these simulations are approximate or even conjectural, yet selections have been made to be at least representative of those for a small-caliber gun system such as 5.56 mm. Thus, the specific results may not be quantitatively accurate but are believed to be illuminating in their qualitative features. In addition to traditional charge design parameters (e.g., propellant type, quantity, and dimensions), we have clearly seen that other design parameters and characteristics can substantially affect early-time processes, even the sequencing of critical events, with significant overall ballistic effects. Not considered in this study were changes in the barrel resistance profile, which would affect early projectile motion, and the presence of circumferential ullage, which would likely influence the path of flame spreading and the magnitude of pressure waves. It is hoped that this initial, brief study will motivate sufficient interest to result in further theoretical and experimental efforts providing a more complete understanding of the details of interior ballistic processes in small-caliber guns.
8. References

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFENSE TECHNICAL INFORMATION CTR (PDF ONLY) DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY RSRCH DEV & ENGRG CMD SYSTEMS OF SYSTEMS INTEGRATION AMSRD SS T 6000 6TH ST STE 100 FORT BELVOIR VA 22060-5608</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB IMNE ALC IMS 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CI OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>2</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CS OK T 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB ATTN AMSRD ARL D J MILLER 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>2</td>
<td>PM MAS ATTN SFAE AMO MAS LTC M BUTLER BLDG 354 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>PM CAS ATTN SFAE AMO CAS BLDG 354 PICATINNY ARSEBAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>CDR US ARMY ARDEC ATTN SFAE PMO CAS J RUTKOWSKI R CIRINCIONE BLDG 171M PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>CDR US ARMY ARDEC ATTN AMSRD AAR AEE W P HUI S EINSTEIN J O'REILLY BLDG 382 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>CDR US ARMY ARDEC ATTN SFAE GSSC TMA C ROLLER R DARCY BLDG 354 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>CDR US ARMY ARDEC ATTN AMSRD AAR D J LANNON AMSRD AAR EBM R CARR BLDG 1 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY ARDEC ATTN AMSTA AR FSA B MACHAK BLDG 1 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY NGIC ATTN AMXST MC3 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318</td>
</tr>
<tr>
<td>7</td>
<td>US ARMY AVIATION & MSSL CMD ATTN AMSRD AMR PS PT W CHEW J S LILLY M LYON J M FISHER B P MARSH R S MICHAELS D THOMPSON BLDG 7120 REDSTONE ARSENAL AL 35898-5249</td>
</tr>
<tr>
<td>2</td>
<td>ALLIANT TECHSYSTEMS INC ATTN E LYNAM WV01 G CORLEY WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210</td>
</tr>
<tr>
<td>4</td>
<td>ALLIANT TECHSYSTEMS ATTN R DOHRN MN11 1428 C AAKHUS MN11 2830 D KAMDAR MN11 2830 B SEE MN11 2439 5050 LINCOLN DR EDINA MN 55436</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2 | ALLIANT TECHSYSTEMS INC
 RADFORD ARMY AMMO PLANT
 ATTN C ZISETTE VA02
 W WORRELL VA 02
 ROUTE 114 PO BOX 1
 RADFORD VA 24143 |
| 3 | DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRD AR WEE T MANN
 R SHAW TECH LIB
 PO BOX 12211
 RSCH TRIANGLE PARK NC 27709-2211 |
| 1 | CDR US ARMY ARDEC
 ATTN AMSRD AR WEE T MANNING
 BLDG 382
 PICATINNY ARSENAL NJ 07806-5000 |
| 2 | CDR US ARMY ARDEC
 ATTN SFAE GSCTMA W SANVILLE
 SFAE AMO MAS LC D GUZIEWICZ
 BLDG 354
 PICATINNY ARSENAL NJ 07806-5000 |
| 4 | CDR US ARMY ARDEC
 ATTN SFAE AMO MAS SMC P RIGGS
 MAJ LEFANTAINE
 SFAE AMO MAS PS
 SFAE AMO MAS LC
 BLDG 354
 PICATINNY ARSENAL NJ 07806-5000 |
| 7 | DIR BENET WEAPONS LAB
 ATTN M AUDINO R DILLON
 R FISCHEL R HASENBEIN
 E KATHE K MINER S SOPOK
 WATERVLIET NY 12189-4050 |
| 1 | COMMANDER
 RADFORD ARMY AMMO PLANT
 ATTN AMSTYA AR QA HI LIB
 RADFORD VA 24141-0298 |
| 1 | COMMANDANT USAFC&S
 ATTN ATSF CN P GROSS
 FT SILL OK 73503-5600 |
| 2 | CDR NAVAL RSRCH LAB
 ATTN TECH LIBRARY J BORIS
 WASHINGTON DC 20375-5000 |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BATTELLE EAST SCI & TECH ATTN A ELLIS 1204 TECHNOLOGY DRIVE ABERDEEN MD 21001-1228</td>
</tr>
<tr>
<td>2</td>
<td>JHU CHEM PROP INFO AGNCY ATTN E LIU R FRY 10630 LITTLE PATUXENT PKWY STE 202 COLUMBIA MD 21044-3200</td>
</tr>
<tr>
<td>1</td>
<td>OUSD (AT&L)/STRAT & TACT SYS MUNITIONS ATTN T MELITA 3090 DEFENSE PENTAGON RM 3B1060 WASHINGTON DC 20301-3090</td>
</tr>
<tr>
<td>1</td>
<td>BRIGHAM YOUNG UNIV ATTN M BECKSTEAD DEPT OF CHEMICAL ENGRG PROVO UT 84601</td>
</tr>
<tr>
<td>1</td>
<td>CA INST OF TECHNOLOGY ATTN E C CULICK 204 KARMAN LAB MAIL STOP 301 46 1201 E CALIFORNIA ST PASADENA CA 91109</td>
</tr>
<tr>
<td>2</td>
<td>UNIV OF ILLINOIS DEPT OF MECH INDUSTRY ENG ATTN H KRIER R BEDDINI 144 MEB 1206 N GREEN ST URBANA IL 61801-2978</td>
</tr>
<tr>
<td>2</td>
<td>PENN STATE UNIV DEPT OF MECHANICAL ENG ATTN T LITZINGER V YANG UNIVERSITY PARK PA 16802-7501</td>
</tr>
<tr>
<td>1</td>
<td>PENN STATE UNIV DEPT OF MECHANICAL ENG ATTN K KUO 140 RESEARCH BLDG EAST UNIVERSITY PARK PA 16802-7501</td>
</tr>
<tr>
<td>1</td>
<td>PENN STATE UNIV DEPT OF MECHANICAL ENG ATTN G SETTLES 301D REBER BLDG UNIVERSITY PARK PA 16802-7501</td>
</tr>
<tr>
<td>1</td>
<td>PENN STATE UNIV DEPT OF MECHANICAL ENG ATTN S THYNELL 309REBER BLDG UNIVERSITY PARK PA 16802-7501</td>
</tr>
<tr>
<td>1</td>
<td>ARROW TECHNOLOGY ASSOC INC 1233 SHELBURN RD D 8 SOUTH BURUNGTON VT 05403</td>
</tr>
<tr>
<td>3</td>
<td>ATK THIOKOL ATTN P BRAITHWAITE T B FARABAUGH R WARDLE PO BOX 707 BRIGHAM CITY UT 84302-0707</td>
</tr>
<tr>
<td>1</td>
<td>ATK ELKTON ATTN W B WALKUP PO BOX 210 ROCKET CENTER WV 26726</td>
</tr>
<tr>
<td>1</td>
<td>ATK ELKTON ATTN J HARTWELL PO BOX 241 ELKTON MD 21921-0241</td>
</tr>
<tr>
<td>1</td>
<td>BAE ARMAMENT SYS DIV ATTN JAHN DYVIK 4800 EAST RIVER RD MINNEAPOLIS MN 55421-1498</td>
</tr>
<tr>
<td>2</td>
<td>GEN DYNAMICS ORD/TACT SYS ATTN N HYLTON J BUZZETT 10101 DR M L KING ST N ST PETERSBURG FL 33716</td>
</tr>
<tr>
<td>1</td>
<td>GENERAL DYNAMICS ARM SYS ATTN J TALLEY 128 LAKESIDE AVE BURLINGTON VT 05401</td>
</tr>
<tr>
<td>1</td>
<td>HICKS AND ASSOCIATES SAIC ATTN 1 MAY 7990 SCIENCE APPLIC CT VIENNA VA 22182</td>
</tr>
<tr>
<td>1</td>
<td>PAUL GOUGH ASSOC INC ATTN P S GOUGH 1048 SOUTH ST PORTSMOUTH NH 03801-5423</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 3 | VERITAY TECHNOLOGY INC
ATTN R SALIZONI J BARNES
E FISHER
4845 MILLERSPORT HWY
EAST AMHERST NY 14501-0305 |
| 1 | SRI INTERNATIONAL
PROPULSION SCIENCES DIV
ATTN TECH LIB
333 RAVENWOOD AVE
MENLO PARK CA 94025-3493 |
| | ABERDEEN PROVING GROUND |
| 1 | DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRD ARL CI OK (TECH LIB)
BLDG 4600 |
| 1 | CDR USA ATC
ATTN STECS LI R HENDRICKSEN
BLDG 400 |
| 43 | DIR USARL
ATTN AMSRD ARL WM B M ZOLTOSKI
C CANDLAND J MORRIS
AMSRD ARL WM BA D LYON
T KOGLER
AMSRD ARL WM BC P PLOSTINS
M BUNDY J NEWILL J SAHU
P WEINACHT
AMSRD ARL WM BD B FORCH
W ANDERSON A WILLIAMS
R BEYER A BRANT L CHANG
T COFFEE J COLBURN P CONROY
B HOMAN A HORST (6 CYS)
S HOWARD A KOTLAR
C LEVERITT R LIEB M NUSCA
R PESCE-RODRIGUEZ
B RICE J SCHMIDT
AMSRD ARL WM BF D WILKERSON
W OBERLE
AMSRD ARL WM EG E SCHMIDT
AMSRD ARL WM M S MCKNIGHT
AMSRD ARL WM SG T ROSENBERGER
W CIEPIELA
AMSRD ARL WM T B BURNS
P BAKER N ELDREDGE |